167 research outputs found

    Fat fraction mapping using bSSFP Signal Profile Asymmetries for Robust multi-Compartment Quantification (SPARCQ)

    Get PDF
    Purpose: To develop a novel quantitative method for detection of different tissue compartments based on bSSFP signal profile asymmetries (SPARCQ) and to provide a validation and proof-of-concept for voxel-wise water-fat separation and fat fraction mapping. Methods: The SPARCQ framework uses phase-cycled bSSFP acquisitions to obtain bSSFP signal profiles. For each voxel, the profile is decomposed into a weighted sum of simulated profiles with specific off-resonance and relaxation time ratios. From the obtained set of weights, voxel-wise estimations of the fractions of the different components and their equilibrium magnetization are extracted. For the entire image volume, component-specific quantitative maps as well as banding-artifact-free images are generated. A SPARCQ proof-of-concept was provided for water-fat separation and fat fraction mapping. Noise robustness was assessed using simulations. A dedicated water-fat phantom was used to validate fat fractions estimated with SPARCQ against gold-standard 1H MRS. Quantitative maps were obtained in knees of six healthy volunteers, and SPARCQ repeatability was evaluated in scan rescan experiments. Results: Simulations showed that fat fraction estimations are accurate and robust for signal-to-noise ratios above 20. Phantom experiments showed good agreement between SPARCQ and gold-standard (GS) fat fractions (fF(SPARCQ) = 1.02*fF(GS) + 0.00235). In volunteers, quantitative maps and banding-artifact-free water-fat-separated images obtained with SPARCQ demonstrated the expected contrast between fatty and non-fatty tissues. The coefficient of repeatability of SPARCQ fat fraction was 0.0512. Conclusion: The SPARCQ framework was proposed as a novel quantitative mapping technique for detecting different tissue compartments, and its potential was demonstrated for quantitative water-fat separation.Comment: 20 pages, 7 figures, submitted to Magnetic Resonance in Medicin

    Feasibility of accelerated T2 mapping for the preoperative assessment of endometrial carcinoma

    Get PDF
    ObjectiveThe application value of T2 mapping in evaluating endometrial carcinoma (EMC) features remains unclear. The aim of the study was to determine the quantitative T2 values in EMC using a novel accelerated T2 mapping, and evaluate them for detection, classification,and grading of EMC.Materials and methodsFifty-six patients with pathologically confirmed EMC and 17 healthy volunteers were prospectively enrolled in this study. All participants underwent pelvic magnetic resonance imaging, including DWI and accelerated T2 mapping, before treatment. The T2 and apparent diffusion coefficient (ADC) values of different pathologic EMC features were extracted and compared. Receiver operating characteristic (ROC) curve analysis was performed to analyze the diagnostic efficacy of the T2 and ADC values in distinguishing different pathological features of EMC.ResultsThe T2 values and ADC values were significantly lower in EMC than in normal endometrium (bothl p < 0.05). The T2 and ADC values were significantly different between endometrioid adenocarcinoma (EA) and non-EA (both p < 0.05) and EMC tumor grades (all p < 0.05) but not for EMC clinical types (both p > 0.05) and depth of myometrial invasion (both p > 0.05). The area under the ROC curve (AUC) was higher for T2 values than for ADC values in predicting grade 3 EA (0.939 vs. 0.764, p = 0.048). When combined T2 and ADC values, the AUC for predicting grade 3 EA showed a significant increase to 0.947 (p = 0.03) compared with those of ADC values. The T2 and ADC values were negatively correlated with the tumor grades (r = -0.706 and r = -0.537, respectively).ConclusionQuantitative T2 values demonstrate potential suitability in discriminating between EMC and normal endometrium, EA and non-EA, grade 3 EA and grade 1/2 EA. Combining T2 and ADC values performs better in predicting the histological grades of EA in comparison with ADC values alone

    Eddy current effects on a clinical 7T-68cm bore scanner

    Get PDF
    Introduction: Eddy currents induced by switching of magnetic field gradients can lead to distortions in short echo-time spectroscopy or diffusion weighted imaging. In small bore magnets, such as human head-only systems, minimization of eddy current effects is more demanding because of the proximity of the gradient coil to conducting structures. Methods: In the present study, the eddy current behavior achievable on a recently installed 7 tesla—68cm bore head-only magnet was characterized. Results: Residual effects after compensation were shown to be on the same order of magnitude as those measured on two whole body systems (3 and 4.7 T), while using two to three fold increased gradient slewrate

    Atlas-free Brain Tissue Segmentation Using a Single T1-weighted MRI Acquisition

    Get PDF
    Many studies investigating the aging brain or disease-induced brain alterations rely on accurate and reproducible brain tissue segmentation. Being a preliminary processing step prior to the segmentation, reliableskull-stripping the removal ofnon-brain tissue is also crucial for all later image assessment. Typically, segmentation algorithms rely on an atlas i.e. pre-segmented template data. Brain morphology, however, differs considerably depending on age, sex and race. In addition, diseased brains may deviate significantly from the atlas information typically gained from healthy volunteers. The imposed prior atlas information can thus lead to degradation of segmentation results. The recently introduced MP2RAGE sequence provides a bias-free T1 contrast with heavily reduced T2*- and PD-weighting compared to the standard MP-RAGE [1]. To this end, it acquires two image volumes at different inversion times in one acquisition, combining them to a uniform, i.e. homogenous image. In this work, we exploit the advantageous contrast properties of the MP2RAGE and combine it with a Dixon (i.e. fat-water separation) approach. The information gained by the additional fat image of the head considerably improves the skull-stripping outcome [2]. In conjunction with the pure T1 contrast of the MP2RAGE uniform image, we achieve robust skull-stripping and brain tissue segmentation without the use of an atla

    Compressed Sensing with Signal Averaging for Improved Sensitivity and Motion Artifact Reduction in Fluorine-19 MRI

    Full text link
    Fluorine-19 (19F) MRI of injected perfluorocarbon emulsions (PFCs) allows for the non-invasive quantification of inflammation and cell tracking, but suffers from a low signal-to-noise ratio and extended scan time. To address this limitation, we tested the hypothesis that a 19F MRI pulse sequence that combines a specific undersampling regime with signal averaging has increased sensitivity and robustness against motion artifacts compared to a non-averaged fully-sampled dataset, when both are reconstructed with compressed sensing. To this end, numerical simulations and phantom experiments were performed to characterize the point spread function (PSF) of undersampling patterns and the vulnerability to noise of acquisition-reconstruction strategies with paired numbers of x signal averages and acceleration factor x (NAx-AFx). At all investigated noise levels, the DSC of the acquisition-reconstruction strategies strongly depended on the regularization parameters and acceleration factor. In phantoms, motion robustness of an NA8-AF8 undersampling pattern versus NA1-AF1 was evaluated with simulated and real motions. Differences were assessed with Dice similarity coefficients (DSC), and were consistently higher for NA8-AF8 compared to NA1-AF1 strategy, for both simulated and real cyclic motions (P<0.001). Both acquisition-reconstruction strategies were validated in vivo in mice (n=2) injected with perfluoropolyether. These images displayed a sharper delineation of the liver with the NA8-AF8 strategy than with the NA1-AF1 strategy. In conclusion, we validated the hypothesis that in 19F MRI, the combination of undersampling and averaging improves both the sensitivity and the robustness against motion artifacts compared to a non-averaged fully-sampled dataset, when both are reconstructed with compressed sensing

    Model-Based Super-Resolution Reconstruction of T2 Maps

    Get PDF
    Purpose High-resolution isotropic T-2 mapping of the human brain with multi-echo spin-echo (MESE) acquisitions is challenging. When using a 2D sequence, the resolution is limited by the slice thickness. If used as a 3D acquisition, specific absorption rate limits are easily exceeded due to the high power deposition of nonselective refocusing pulses. A method to reconstruct 1-mm(3) isotropic T-2 maps is proposed based on multiple 2D MESE acquisitions. Data were undersampled (10-fold) to compensate for the prolonged scan time stemming from the super-resolution acquisition. Theory and Methods The proposed method integrates a classical super-resolution with an iterative model-based approach to reconstruct quantitative maps from a set of undersampled low-resolution data. The method was tested on numerical and multipurpose phantoms, and in vivo data. T-2 values were assessed with a region-of-interest analysis using a single-slice spin-echo and a fully sampled MESE acquisition in a phantom, and a MESE acquisition in healthy volunteers. Results Numerical simulations showed that the best trade-off between acceleration and number of low-resolution datasets is 10-fold acceleration with 4 acquisitions (acquisition time = 18 min). The proposed approach showed improved resolution over low-resolution images for both phantom and brain. Region-of-interest analysis of the phantom compartments revealed that at shorter T-2, the proposed method was comparable with the fully sampled MESE. For the volunteer data, the T-2 values found in the brain structures were consistent across subjects (8.5-13.1 ms standard deviation). Conclusion The proposed method addresses the inherent limitations associated with high-resolution T-2 mapping and enables the reconstruction of 1 mm(3) isotropic relaxation maps with a 10 times faster acquisition

    Retrospective rigid motion correction of undersampled MRI data

    Get PDF
    The present study combines retrospective motion correction and GRAPPA reconstruction. We propose a technique that performs several alternations of GRAPPA interpolation and motion correction steps, suppressing the artifacts caused by motion over the course of the optimization. Motion parameters are estimated directly from the data with the aid of free induction decay navigators. The proposed algorithm does not require a priori knowledge of coil sensitivity profiles and can be applied retrospectively to data acquired with generic sequences such as MP-RAGE. The algorithm was tested on motion corrupted brain images of healthy volunteers, performing controlled head movement during the scan. Results demonstrate a significant improvement in image quality

    TrueCISS: Genuine bSSFP Signal Reconstruction from Undersampled Multiple-Acquisition SSFP Using Model-Based Iterative Non-Linear Inversion

    Get PDF
    Balanced steady-state free-precession (bSSFP) is prone to local field inhomogeneities, typically appearing as signal voids, i.e. banding-artifacts. A new method, termed true constructive interference in steady state (trueCISS), is proposed based on the acquisition of eight highly undersampled bSSFP k-spaces with different radio-frequency (RF) phase increments. A model-based non-linear inversion is used to fit the bSSFP signal model onto the undersampled data, effectively estimating parameter maps that allow synthesizing the genuine bSSFP signal over the whole image, thus without any noticeable banding artifacts
    corecore